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respect to low and high frequency periodic perturbations�
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Abstract

The stability of the equilibrium of gyroscopically coupled quasilinear systems with many degrees of freedom is investigated
when there is dissipation and a periodic perturbation which is not necessarily of small amplitude. Non-potential forces (customarily
referred to as radial correction forces or circulating forces) act together with potential forces. Under conditions of a low- and
high-frequency periodic perturbation, classes of systems are distinguished using Lyapunov functions which possess the property of
unperturbability, that is, their qualitative structure remains almost the same as in the case of autonomous systems. Generalizations
to the case of non-periodic perturbations are possible.
© 2008 Elsevier Ltd. All rights reserved.

The problem of the stability of an equilibrium when gyroscopic forces act goes back to the time of Thomson and
Tait1 and was subsequently studied by Routh,2 Chetayev3 and many of their successors. While, in the classical papers,
gyroscopic stabilization was considered for cases when the positional forces are potential, the subsequent general-
izations also take into account positional non-potential forces.4–8 Parametrically perturbable systems are considered
below as an extension of the preceding investigation,9 where both the gyroscopic constraint as well as the positional
non-potential forces are taken into account. For these systems, a threshold of non-perturbability is established using
Lyapunov functions in cases when the corresponding frequency of the periodic perturbation may tend both to zero and
to infinity.

1. Introduction

Consider the non-autonomous system with n degrees of freedom

(1.1)

where A0 is a constant matrix with positive eigenvalues and the matrices G(ωt),
∏

(ωt), C(ωt) ∈ C1
t (R) and the vector

F(ωt, q, q̇) depend (2�/�)-periodically on t (� > 0). We shall assume that the matrix D is constant and that D = DT.
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Since dissipation is usually small, the representation of the matrix D in the form D = �D0, where � is a small positive
parameter, is then permitted and the matrix D0 has positive eigenvalues. The matrices G(�t),

∏
(�t) and C(�t) have

the following structure:

(1.2)

where G0,
∏

0, C0 are constant matrices. Since G(ωt),
∏

(ωt), C(ωt) ∈ C1
t (R), the norms of both the matrices G1(�t),∏

1(�t), C1(�t) and of their derivatives are bounded.
Next, without loss of generality, we shall assume that all of the coefficients of system (1.1) as well as the time t are

dimensionless quantities.
We will investigate the equilibrium position q = q̇ = 0 of system (1.1) with the assumptions that have been made

regarding it.

2. The stability of the equilibrium of system (1.1) under conditions of a low-frequency periodic perturbation

Starting out from the linear approximation of system (1.1), we will denote the roots of the equation

(2.1)

by �1(t), . . ., �2n(t) and introduce the matrices

Theorem 1. Suppose the matrices Ĝ(ωt) and Ĉ(ωt) contain only the parameter � as a factor accompanying t.

Then a threshold value of the frequency � = �0 exists such that, when � < �0, the equilibrium position q = q̇ = 0
of system (1.1) is asymptotically stable if

(2.2)

and, on the other hand, unstable if just a single root �*(t) of Eq. (2.1) exists such that

(2.3)

Proof. We will assume that condition (2.2) is satisfied. Then, according to Lyapunov’s theorem10 (see also Ref. 11)
a positive-definite quadratic form

(2.4)

exists which satisfies the equation

(2.5)

in which the Lyapunov operator L(V) is defined by the equality

(2.6)

and we choose the negative-definite quadratic form U(ωt, q, q̇) ∈ C1
t (R) to depend (2�/�)-periodically on t and to

contain only the parameter � as a factor accompanying t.
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In order to find the coefficients of the form V, according to Eq. (2.5) we obtain a system of n(2n + 1) linear
inhomogeneous equations. On the basis of Eq. (2.5), the elements of the matrices A1(�t), B1(�t), D1(�t), as solutions
of the corresponding system of linear equations, can be represented in the form

where d(ωt) ∈ C1
t (R) is a n(2n + 1)- order determinant which is composed of the coefficients of the linear approximation

of system (1.1), and the quantities a0
1ij(ωt), b0

1ij(ωt), d0
1ij(ωt) ∈ C1

t (R) depend both on the coefficients of the linear
approximation of system 91.1) and, also, on the coefficients of the form U(ωt, q, q̇). According to the conditions of
Theorem 1, the determinant d(�t) satisfies the inequality

and, consequently, a1ij(ωt), b1ij(ωt), d1ij(ωt) ∈ C1
t (R).

We will use the quadratic form V as the Lyapunov function. Calculating the derivative of the function V with respect
to t along the vector field, which is defined by system (1.1), we obtain

(2.7)

where

The quadratic form ∂V/∂�t has bounded coefficients. Hence, when the parameter � tends to zero in equality (2.7), we
arrive at a conclusion concerning the existence of a threshold value �0 of the parameter � such that, when � < �0, the
right-hand side of this equality becomes negative-definite. From this, we conclude that Theorem 1 is correct in the case
of condition (2.2).

Now suppose a root �*(t) of Eq. (2.1) exists such that condition (2.3) is satisfied. Then, according to Lyapunov’s
theorem, a quadratic form with alternating signs

exists which satisfies the equation

(2.8)

in which the Lyapunov operator L(W) is determined by an equality of the form (2.6) with the matrices A1(�t), B1(�t),
D1(�t) in it replaced by the matrices A2(�t), B2(�t), D2(�t). On the right-hand side of equality (2.8), � is a positive
constant, and we choose the positive-definite quadratic form U1(ωt, q, q̇) ∈ C1

t (R) to depend (2�/�)- periodically on t
and to contain only the parameter � as a factor accompanying t.

Determining the coefficients of the quadratic form W in an analogous manner to that described above, we use
this quadratic form as the Lyapunov function. Calculating the derivative of W with respect to t along the vector field
determined by system (1.1), we have

(2.9)

Next, following the scheme described above, we conclude that a threshold value �0 of the parameter � exists such
that, when � < �0, the function

becomes positive-definite. Therefore, in accordance with equality (2.9), when account is taken of the sign alternation
of the quadratic form W we conclude that all the conditions of the Chetayev instability theorem hold. �

Theorem 1 is proved.
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So, under the conditions of Theorem 1, the behaviour of system (1.1) is completely determined by the properties
of the roots of Eq. (2.1), that is, we have a situation which is very close to the case of autonomous systems when the
coefficients of a system do not change with time.

Example 1. Consider the system9

(2.10)

in which � is a small positive parameter and the matrix D0 has positive eigenvalues. The matrix B(�t) admits of the
representation B(�t) = B0 + �B1(�t), where the parameter � is so small that the eigenvalues bj(t) of the matrix B(�t)
are positive and

It can be shown that, in this case, condition (2.2) is satisfied for the roots of the equation

We shall assume that the matrix B(�t) only contains the parameter � as a factor accompanying t.

Choosing the function V in the form of (2.4), we consider the equation

(2.11)

as Eq. (2.5), where the positive constant � < ��−, and �− denotes the smallest characteristic number of the equation

Eq. (2.11) is satisfied if

and the function V in the case being considered is therefore determined by the expression

(2.12)

The derivative of the function V with respect to t along the vector field defined by system (2.10) has the form

(2.13)

It follows from equality (2.13) that, for a sufficiently small value of �, the derivative dV/dt becomes negative-definite.
Actually, if the choice of the constant � satisfies the condition

(2.14)

where the number 	+ corresponds to sup(	1(t), . . ., 	n(t)) and the quantities 	i(t) are the characteristic numbers of
the equation

then the derivative dV/dt is negative-definite. In turn, condition (2.14) makes sense if �	+�/2 < ��− and therefore

Consequently, the equilibrium position q = q̇ = 0 of system (2.10) is asymptotically stable if � < �0 and the
eigenvalues of the matrix B(�t) are positive and detached from zero



918 S.P. Sosnitskii / Journal of Applied Mathematics and Mechanics 71 (2007) 914–925

Remark 1. In the example which has been considered, the threshold value �0 of the parameter � has been determined,
starting out from the structure of the corresponding equations, which ensures the asymptotic stability of the equilibrium.
Coarser estimates of � can be directly derived from the scheme of proof of Theorem 1.

We will now consider the regular bundle of quadratic forms

(2.15)

Suppose the number �+ corresponds to sup(�1(t), . . ., �2n(t)), where �i(t) are the characteristic numbers of the bundle
of forms being considered.

We represent equality (2.7) in the form

(2.16)

Comparing the bundle (2.15) and the right-hand side of equality (2.16), we conclude that the derivative dV/dt is
negative-definite if

whence � < 1/�+ and, therefore, �0 = (�+)−1.
When instability is discussed, we consider the regular bundle of quadratic forms in the form

representing equality (2.9) as follows:

Then by arguing in a similar manner as described above, we determine �0.

Remark 2. It can happen that the representation

holds in equalities (1.2).

Then, the condition of Theorem 1, which concerns the way in which the parameter � occurs in the equations of
motion (1.1), is not satisfied. However, there is no difficulty in investigating the stability, in this case also by formulating
the corresponding requirements with respect to the roots of the equation

We will later use the Lyapunov function, constructed for the unperturbed system

(2.17)

to investigate the complete equations of motion (1.1). In particular, in the case being considered, the equalities
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where

and the functions

correspond to the unperturbed system (2.17), are analogues of equalities (2.7) and (2.9).
On combining the approach proposed here with the scheme for the proof of Theorem 1, there is no difficulty in

treating the situation when only some of the coefficients of the matrices G1(�t),
∏

1(�t), C1(�t) are multiplied by �
or by positive powers of �. Within the framework of this approach, only the case when the coefficients of the above
matrices are multiplied by negative powers of � is inadmissible.

Example 2. We will investigate the stability of a gyro-horizon compass in the case of the circulation of a ship.12 The
corresponding system of equations of motion can be reduced to the form12

(2.18)

where

and the positive constant b corresponds to a damping fautor, 
 is the Schuler frequency, � is the projection of the
absolute angular velocity of the sensitive component of the gyrocompass on to the geocentric vertical of the position, 	
is a small parameter, � is the angular velocity of circulation, and �0 is the initial track. We therefore have the situation
considered in Remark 2.

We now consider the unperturbed system

It is quit obvious that its equilibrium position is asymptotically stable. Consequently, a Lyapunov function exists which
satisfies Lyapunovr’s theorem on asymptotic stability. It is easy to show that this function is a quadratic form of the
form (2.12)

subject to the condition that � < 2b. Its derivative with respect to the vector field, which is determined by Eqs (2.18),
has the form

The derivative dV/dt is negative-definite if the expression
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is positive and non-zero. Noting that

and that the expression �(2b − �) takes its maximum value when � = b, we obtain the condition for to negative-definite
dV/dt in the form 
2 > 	2 > �2. Hence, �0 = 
/	.

Remark 3. The proposed approach may be found to be effective not only in the case of a periodic perturbation but,
also, for any other oscillating perturbation which changes slowly with time and, in particular, for systems of the form
(1.1) when � is replaced by �, where � is a small parameter.

3. Equilibrium stability in the case of a high frequency perturbation

We will now consider a periodic perturbation with a high frequency �. In this case, the stability of the equilibrium can
be investigated under assumptions which are less restrictive with regard to the periodic perturbation and, in particular,
the equations

(3.1)

can be considered where [D(ωt) + G(ωt)], [
∏

(ωt) + C(ωt)] ∈ C0
t . As above, we shall assume that the constant matrix

A0 is symmetric with positive eigenvalues and, furthermore, that

We later use the notation

and, similarly,

In addition, we represent the matrices being considered in the form

where, correspondingly,

Suppose D∗
1(ωt), G∗

1(ωt),
∏∗

1(ωt), C∗
1(ωt) are the primitives of the corresponding matrices D1(�t), . . ., C1(�t) such

that

Since the primitives being considered contain the quantity �− with a multiplier, it is convenient to represent them
later in the form

where D̃1(ωt), . . . , C̃1(ωt) are, as before, matrices with a zero mean.
Taking account of the notation introduced, we rewrite Eq. (3.1) in the form

(3.2)
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where

Together with (3.2), we consider the truncated system

(3.3)

and the characteristic equation corresponding to it

(3.4)

the roots of which are denoted by �1, . . ., �2n.

Theorem 2. Suppose the matrices A−1
0 [D(ωt) + G(ωt)] and A−1

0 [
∏

(ωt) + C(ωt)] only contain the parameter ω as
a multiplier accompanying t.

Then a threshold value of the frequency � = �0 exists such that, when � > �0, the equilibrium position q = q̇ = 0
of system (3.1) is asymptotically stable if Re�i < 0, where �i are the roots of Eq. (3.4) and, on the other hand, it is
unstable if just a single root �* of Eq. (3.4) with a positive real part exists.

Proof. Let us assume that Re�i < 0. Then, according to Lyapunov’s theorem, a positive-definite quadratic form

exists in which A1, B1, F1 are symmetric constant matrices which satisfy the equation

(3.5)

where U(q̇, q) is the negative-definite quadratic form

We select the function

(3.6)

as the Lyapunov function.Here,

Calculating the derivative of the function V ∗
1 with respect to t along the vector field defined by system (3.1), we obtain

(3.7)

where

We now direct the parameter � on the right-hand side of equalities (3.6) and (3.7) to infinity. Noting that the
coefficients of the quadratic forms W1 and W∗

1 are bounded, we conclude that a threshold value �0 of the parameter �
exists such that, when � > �0, the right-hand side of equality (3.6) becomes positive-definite and the right-hand side
of equality (3.7) becomes negative-definite. Hence we conclude that Theorem 2 holds in the case when Re�i < 0.
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Now, suppose a root �* Eq. (3.4) exists such that Re�* > 0. Then, according to Lyapunov’s theorem, a quadratic
form with alternating signs

exists which satisfies the equation

(3.8)

where � is a positive constant, U1(q, q̇) is a positive-definite quadratic form, and we obtain the Lyapunov operator
L(V2) from L(V1) by replacing the matrices A1, B1, F1 by A2, B2, F2.

We select as the Lyapunov function, the function

(3.9)

where we obtain W2 from W1 by replacing the matrices A1, B1 by A2, B2. Calculating the derivative of the function V ∗
2

with respect to t along the vector field defined by system (3.1), we have

(3.10)

Here, as before, we obtain W∗
2 from W∗

1 by replacing the matrices A1, B1 by A2, B2.
We then rewrite equality (3.10) in the form

(3.11)

The coefficients of the quadratic form (−κW2 + W∗
2 ) are bounded regardless of the magnitude of �, and, therefore, by

subsequently following the scheme described above, we conclude that a threshold value �0 of the parameter � exists
such that, when � > �0, the expression

becomes a positive-definite function and the quadratic form V ∗
2 , in accordance with expression (3.9), takes values with

different signs. So, the conditions of the Chetayev instability theorem are satisfied in the situation being considered.
�

Theorem 2 is proved.
Coarse estimates for � can be obtained in a similar way to that indicated in Remark 1. We merely note that it is now

necessary to obtain estimates of � taking account of the fact that the functions V ∗
1 and V ∗

2 also contain the factor �−1.
Hence, under the conditions of Theorem 2, the qualitative properties of system (3.1) are entirely determined by the

properties of truncated system (3.3), which is autonomous. In this sense, system (3.3), as the defining part of system
(3.1), exhibits stiffness with respect to high-frequency periodic perturbations, which can be large in amplitude but,
however, possess a zero mean.

Example 3. We will now consider the equations of a rotating arm which can be reduced to the form13

(3.12)

where
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and the constant coefficients b and 	 reflect the existence of internal and external resistance forces, and the quantity
�(�t) denotes the angular velocity of rotation of the arm. We shall assume that the periodic function �1(�t) contains
only the parameter � as a multiplier accompanying t.

We will investigate the stability of the solution �̇ = � = 0 of system (3.12).
In the case being considered, we have the system

(3.13)

as an analogue of Eq. (3.3).
The matrix C0 is obtained from the matrix C(�t) by replacing �(�t) by �0. The characteristic equation takes the

form

Its roots have negative real parts if the inequality

(3.14)

is satisfied. We choose the Lyapunov function for the truncated system in the form (2.12)

Its derivative along the vector field determined by Eq. (3.13) has the form

(3.15)

and is negative-definite if

Noting that the expression �[2(b + 	) − �] has a maximum value when � = b + 	, we obtain the condition for dV/dt to be
negative-definite in the form of inequality (3.14). Hence, the function V can be considered as a solution of Lyapunov’s
equation of the type (3.5) in which the right-hand side of equality (3.15) plays in the role of U(q̇, q).

In the case of the initial system (3.12), we select the function

as the Lyapunov function. We recall that, according to what has been stated above, Ω∗
1(ωt) = ω−1Ω̃1(ωt), where

Ω∗
1(ωt) is the primitive of the function �1(�t) such that 〈Ω∗

1(ωt) = 0〉. The derivative of the function V1 with respect
to t along the vector field defined by system (3.12) has the form

(3.16)

We now use the notation
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The condition for the function V1 to be positive-definite reduces to the inequality

(3.17)

The derivative dV1/dt is negative-definite if

(3.18)

On the basis of inequalities (3.17) and (3.18) we conclude that

(3.19)

where 1/ω
(1)
0 and 1/ω

(2)
0 are respectively the positive roots of the equations obtained by equating the left-hand sides

of inequalities (3.17) and (3.18) to zero.
Starting out from these equations and inequality (3.19), there is no difficulty in determining the value of �0 for

which the inequality � > �0, together with inequality (3.14), ensures the asymptotic stability of the equilibrium being
considered.

We note that, if, instead of the derivative of the function V1 with respect to t along the vector field defined by system
(3.12), the derivative of the function V with respect to t is considered, we obtain the condition for the asymptotic
stability of the equilibrium in the form

This condition is close to condition (3.14) and imposes a constraint on the amplitude of the periodic perturbation
�1(�t). If account is taken of inequality (3.14), the asymptotic stability conditions obtained using the function V1
impose constraints on the mean of �(�t) and, also, on the frequency �. Hence, according to these conditions, for
any fixed amplitude of a periodic perturbation �1(�t), it is possible to select a frequency � such that the equilibrium
position becomes asymptotically stable. There is nothing surprising about the fact that, depending on the structure
of the auxiliary functions, we arrive at different versions of the conditions for asymptotic stability, since the topic of
discussion is the sufficient conditions.

Remark 4. The proposed approach can prove to be useful not only in the case of periodic perturbations but also in
the case of any other rapidly oscillating perturbation and, in particular, in the case of systems of the form

where � is a large parameter. It is clear that, in this case, it is necessary to consider the question of the mean of the
matrices D(�t), . . ., C(�t).

Remark 5. The requirement concerning the nature of the occurrence of the parameter � in the equations of motion
(3.1) in Theorem 2 is important. In order to demonstrate this, we will represent Eq. (3.1) in the form of the first order
system

(3.20)

Assuming that the parameter � is large and changing to fast time �t = �, we obtain

Hence, if the vector X(�t, x) in system (3.20) contains only the parameter � as a multiplier accompanying t, we arrive
at the equations in the standard Bogolyubov form in the case of sufficiently large �. Without stipulations concerning
the nature of the appearance of the parameter � in the equations of motion, the standard form of the equations of
motion cannot be obtained. The well-known Demidovich theorem on averaging contains such a stipulation, although
in a somewhat different form.14
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Returning to the well-known problem of the stabilization of the upper position of a pendulum, we will represent the
corresponding second-order equation in the form of a system of two equations

(3.21)

where �, a and b are positive constants. In the case being considered, on changing to fast time �t = � we obtain the
system of equations

which is not a system in the standard Bogolyubov form. Additional transformations have been used15 in order to reduce
Eq. (3.21) to standard form. As a result, it has been shown that the equilibrium x = y = 0 is asymptotically stable for a
sufficiently large value of �.

Consequently, formal averaging in system (3.21) can lead to an erroneous result even in the case of large values of
�.

If the coefficients of the system contain the parameter �, then additional constraints concerning the manner in which
� occurs in the equations of motion are necessary. This question has been discussed in detail in Ref. 9.

In the light of what has been stated above, within the framework of the approach considered it is not only a question
of the proof of the existence of a threshold value �0 which ensures this or that property of the solutions of the system
but, also, of the routes for determing this value in explicit form which, as the examples considered above show, is of
fundamental importance when solving practical problems.
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